MAV'RIC
/home/travis/build/lis-epfl/MAVRIC_Library/util/maths.h
00001 /*******************************************************************************
00002  * Copyright (c) 2009-2016, MAV'RIC Development Team
00003  * All rights reserved.
00004  *
00005  * Redistribution and use in source and binary forms, with or without
00006  * modification, are permitted provided that the following conditions are met:
00007  *
00008  * 1. Redistributions of source code must retain the above copyright notice,
00009  * this list of conditions and the following disclaimer.
00010  *
00011  * 2. Redistributions in binary form must reproduce the above copyright notice,
00012  * this list of conditions and the following disclaimer in the documentation
00013  * and/or other materials provided with the distribution.
00014  *
00015  * 3. Neither the name of the copyright holder nor the names of its contributors
00016  * may be used to endorse or promote products derived from this software without
00017  * specific prior written permission.
00018  *
00019  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00023  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029  * POSSIBILITY OF SUCH DAMAGE.
00030  ******************************************************************************/
00031 
00032 /*******************************************************************************
00033  * \file maths.h
00034  *
00035  * \author MAV'RIC Team
00036  * \author Felix Schill
00037  * \author Geraud L'Eplattenier
00038  *
00039  * \brief Useful math functions
00040  *
00041  ******************************************************************************/
00042 
00043 
00044 #ifndef MATHS_H
00045 #define MATHS_H
00046 
00047 #ifdef __cplusplus
00048 extern "C"
00049 {
00050 #endif
00051 
00052 #include <stdint.h>
00053 #include <math.h>
00054 
00055 #define PI 3.141592653589793f           ///< Declaration of PI for math computation
00056 
00057 
00061 #define MATH_DEG_TO_RAD (PI/180.0f)
00062 
00063 
00067 #define MATH_RAD_TO_DEG (180.0f/PI)
00068 
00069 
00076 #define SQR(in) \
00077         ((in)*(in))
00078 
00079 
00086 float static inline maths_deg_to_rad(float i)
00087 {
00088     return MATH_DEG_TO_RAD * i;
00089 }
00090 
00091 
00098 float static inline maths_rad_to_deg(float i)
00099 {
00100     return MATH_RAD_TO_DEG * i;
00101 }
00102 
00103 
00111  float static inline maths_calc_smaller_angle(float angle)
00112  {
00113      float out;
00114 
00115      if (angle > 0.0f)
00116      {
00117          out = fmod(angle + PI, 2.0f * PI) - PI;
00118      }
00119      else
00120      {
00121          out = fmod(angle - PI, 2.0f * PI) + PI;
00122      }
00123 
00124      return out;
00125  }
00126 
00127 
00137 float static inline maths_fast_inv_sqrt(float number)
00138 {
00139     union
00140     {
00141         float   f;
00142         int32_t l;
00143     } i;
00144 
00145     float x, y;
00146     const float f = 1.5f;
00147 
00148     x = number * 0.5f;
00149     i.f = number;
00150     i.l  = 0x5f3759df - (i.l >> 1);
00151     y = i.f;
00152     y = y * (f - (x * y * y));
00153     return y;
00154 }
00155 
00156 
00164 float static inline maths_fast_sqrt(float number)
00165 {
00166     union
00167     {
00168         float   f;
00169         int32_t l;
00170     } i;
00171 
00172     float x, y;
00173     const float f = 1.5f;
00174 
00175     x = number * 0.5f;
00176     i.f = number;
00177     i.l  = 0x5f3759df - (i.l >> 1);
00178     y = i.f;
00179     y = y * (f - (x * y * y));
00180     y = y * (f - (x * y * y));     // repeat newton iteration for more accuracy
00181     return number * y;
00182 }
00183 
00184 
00192 float static inline maths_fast_sqrt_1(float input)
00193 {
00194     if (input < 0)
00195     {
00196         return 0.0f;
00197     }
00198 
00199     float result = 1.0f;
00200 
00201     result = 0.5f * (result + (input / result));
00202     result = 0.5f * (result + (input / result));
00203 
00204     return result;
00205 }
00206 
00207 
00215 static inline float maths_f_abs(const float a)
00216 {
00217     if (a >= 0.0f)
00218     {
00219         return a;
00220     }
00221     else
00222     {
00223         return -a;
00224     }
00225 }
00226 
00227 
00236 static inline float maths_f_min(const float a, const float b)
00237 {
00238     if (a <= b)
00239     {
00240         return a;
00241     }
00242     else
00243     {
00244         return b;
00245     }
00246 }
00247 
00248 
00257 static inline float maths_f_max(const float a, const float b)
00258 {
00259     if (a >= b)
00260     {
00261         return a;
00262     }
00263     else
00264     {
00265         return b;
00266     }
00267 }
00268 
00269 
00280 static float inline maths_clip(float input_value, float clip_value)
00281 {
00282     if (input_value > clip_value)  return clip_value;
00283     if (input_value < -clip_value) return -clip_value;
00284     return input_value;
00285 }
00286 
00287 
00296 static float inline maths_soft_zone(float x, float soft_zone_width)
00297 {
00298     if (soft_zone_width < 0.0000001f)
00299     {
00300         return x;
00301     }
00302     else
00303     {
00304         return x * x * x / (SQR(soft_zone_width) + SQR(x));
00305     }
00306 };
00307 
00308 
00315 static float inline maths_sigmoid(float x)
00316 {
00317     return (x / maths_fast_sqrt(1 + SQR(x)));
00318 };
00319 
00320 
00327 static float inline maths_center_window_2(float x)
00328 {
00329     return 1.0f / (1 + SQR(x));
00330 }
00331 
00332 
00339 static float inline maths_center_window_4(float x)
00340 {
00341     return 1.0f / (1 + SQR(SQR(x)));
00342 }
00343 
00344 
00356 static float inline maths_median_filter_3x(float a, float b, float c)
00357 {
00358     float middle;
00359 
00360     if ((a <= b) && (a <= c))
00361     {
00362         middle = (b <= c) ? b : c;
00363     }
00364     else if ((b <= a) && (b <= c))
00365     {
00366         middle = (a <= c) ? a : c;
00367     }
00368     else
00369     {
00370         middle = (a <= b) ? a : b;
00371     }
00372 
00373     return middle;
00374 }
00375 
00376 
00390 static inline float maths_interpolate(float x, float x1, float x2, float y1, float y2)
00391 {
00392     if (x1 == x2)
00393     {
00394         return y1;
00395     }
00396     else
00397     {
00398         float y = y1 + (y2 - y1) * (x - x1) / (x2 - x1);
00399         return y;
00400     }
00401 }
00402 
00403 
00404 static inline int8_t maths_sign(float x)
00405 {
00406     if (x >= 0.0f)
00407     {
00408         return 1.0f;
00409     }
00410     else
00411     {
00412         return -1.0f;
00413     }
00414 }
00415 
00416 
00417 #ifdef __cplusplus
00418 }
00419 #endif
00420 
00421 #endif  /*  MATHS_H  */
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines